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Abstract. Parallel programming models on large-scale systems require
a scalable system for managing the processes that make up the execution
of a parallel program. The process-management system must be able to
launch millions of processes quickly when starting a parallel program
and must provide mechanisms for the processes to exchange the infor-
mation needed to enable them communicate with each other. MPICH2
and its derivatives achieve this functionality through a carefully defined
interface, called PMI, that allows different process managers to interact
with the MPI library in a standardized way. In this paper, we describe
the features and capabilities of PMI. We describe both PMI-1, the cur-
rent generation of PMI used in MPICH2 and all its derivatives, as well
as PMI-2, the second-generation of PMI that eliminates various short-
comings in PMI-1. Together with the interface itself, we also describe a
reference implementation for both PMI-1 and PMI-2 in a new process-
management framework within MPICH2, called Hydra, and compare
their performance in running MPI jobs with thousands of processes.

1 Introduction

While process management is an integral part of high-performance computing
(HPC) systems, it has historically not received the same level of attention as
other aspects of parallel systems software. The scalability of process manage-
ment is not much of a concern on systems with only a few hundred nodes. As
HPC systems get larger, however, systems with thousands of nodes and tens of
thousands of processing cores are becoming common; indeed, the largest systems
in the world already use hundreds of thousands of processing cores. For such sys-
tems, a scalable design of the process-management infrastructure is critical for
various aspects such as launching and management of parallel applications, de-
bugging utilities, and management tools. A process-management system must,
of course, start and stop processes in a scalable way. In addition, it must pro-
vide mechanisms for the processes in a parallel job to exchange the information
needed to establish communication among them.

Although the growing scale of HPC systems requires close interaction be-
tween the parallel programming library (such as MPI) and the process manager,

⋆ This work was supported in part by the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract #DE-AC02-
06CH11357; by the DOE grant #DE-FG02-08ER25835; and by the National Science
Foundation under grant #0702182.



an appropriate separation between these two components is necessary. This sep-
aration not only allows for their independent development and improvement but
also keeps the parallel programming library generic enough to be used with any
process-management framework. At the same time, these two components must
share sufficient information so as to allow the parallel programming library to
take advantage of specific characteristics of the system on which it is running.

With these requirements in mind, we initially designed PMI, a generic process-
management interface for parallel applications. In this paper, we start by describ-
ing the first generation of PMI (PMI-1). PMI-1 is widely used in MPICH2 [1]
and other MPI implementations derived from it, such as MVAPICH2 [4], Intel
MPI [6], SiCortex MPI [12], and Microsoft MPI [7] (for the programming library
side) as well as in many process-management frameworks including MPICH2’s
internal process managers (Hydra, MPD, SMPD, Gforker, Remshell), and other
external process managers such as SLURM [15], OSC mpiexec [9], and OSU
mpirun [13] (for the process-manager side).

While extremely successful, PMI-1 has several limitations, particularly when
applied to modern HPC systems. These limitations include issues related to
scalability for large numbers of cores on a single node and efficient interac-
tion with hybrid programming models that combine MPI and threads, amongst
others. Building on our experiences with PMI-1, we recently designed a second-
generation interface (PMI-2) that overcomes the shortcomings of PMI-1. The
second part of the paper describes this new interface and a reference imple-
mentation of both PMI-1 and PMI-2 in a new process-management framework
within MPICH2, called Hydra [5]. We also present performance results com-
paring PMI-2’s capabilities to that of PMI-1 and other process-management
interfaces on system scales of nearly 6,000 processes.

2 Requirements of a Process-Management Interface

In this section we provide a brief overview of what is required of a process-
management interface for scalable parallel process management on large systems.

2.1 Decoupling the Process Manager and the Process-Management
Interface

In our model, process management comprises three primary components: (1) the
parallel programming library (such as MPI), (2) the PMI library, and (3) the
process manager. These components are illustrated in Figure 1 with examples
of different MPI libraries, PMI libraries, and process managers.

The process manager is a logically centralized process (but often a dis-
tributed set of processes in practice) that manages (1) process launching (in-
cluding starting/stopping processes, providing the environment information to
each process, stdin/out/err forwarding, propagating signals) and (2) information
exchange between processes in a parallel application (e.g., to set up communica-
tion channels). Several process managers are available (e.g., PBS [8], SUN Grid
Engine [14], and SSH), that already provide such capabilities.
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Fig. 1. Interaction of MPI and the process manager through PMI

The PMI library provides the PMI API. The implementation of the PMI
library, however, might depend on the system itself. In some cases, such as for
IBM Blue Gene/L (BG/L) [3], the library may use system-specific features to
provide PMI services. In other cases, such as for processes on a typical commodity
cluster, the PMI library can communicate with the process manager over a
communication path (e.g. TCP). While the PMI library can be implemented in
any way that the particular implementation prefers, in both PMI-1 and PMI-
2 there is a predefined “wire protocol” where data is exchanged through the
sockets interface. The advantage of using this protocol is that any application
that uses the PMI API with the predefined PMI wire protocol is compatible
with any PMI process manager implementation that accepts the wire protocol.

We note that the PMI API and the PMI wire protocol are separate entities.
An implementation may choose to implement both, or just one of them. For
example, the PMI library on BG/L provides the PMI API but does not use the
sockets-based wire protocol. Thus, the library is compatible with any program-
ming model using the PMI API, but it is not compatible with process managers
that accept the sockets-based PMI wire protocol.

2.2 Overview of the First-Generation PMI (PMI-1)

Processes of a parallel application need to communicate with each other. Es-
tablishing this communication typically requires publishing a contact address,
which may be an IP address, a remotely accessible memory segment, or any
other interconnect-specific identifier. Since the process manager knows where all
the processes are, and because it is (probably) managing some communication
with the processes to handle standard I/O (stdin, stdout, and stderr), it is nat-
ural to have the process-management system also provide the basic facilities for
information interchange. This is the key feature of our process-management in-
terface, PMI—a recognition that these two features are closely related and can
be effectively provided through a single service.

While PMI itself is generic for any parallel programming model and not just
MPI, for ease of discussion we consider only the MPI programming model here. In
the case of MPI, PMI deals with aspects such as providing each MPI process with



information about itself (such as its rank) as well as about the other processes
in the application (such as the size of MPI_COMM_WORLD). Furthermore, each PMI
process manager that launches parallel applications is expected to maintain a
database of all such information. PMI defines a portable interface that allows the
MPI process to interact with the process manager by adding information to the
database (“put” operations) and querying information added by other processes
in the application (“get” operations). The PMI functions are translated into the
appropriate wire protocol by the PMI provider library and exchanged with the
process manager. Most of the database is exchanged by using “key-value” pairs.
Together with “put” and “get” operations, PMI also provides collective “fence”
operations that allow efficient, collective data-exchange capabilities (the use of
fence is described in more detail in Section 2.3).

As an example interaction between the MPI library, the PMI library, and the
process manager, consider a parallel application with two processes, P0 and P1,
where P0 wants to send data to P1. In this example, during MPI initialization,
each MPI process adds to the PMI database information about itself that other
processes can use to connect to it. When P0 calls an MPI Send to P1, the MPI
library can look up information about P1 from the PMI database, connect to P1

(if needed) by using this information, and send the data.

2.3 PMI Requirements for the Process Manager

In designing the process-management interface, there are two primary require-
ments for the process manager. First, a careful separation of features is needed
to enable layering on a “native” process manager with the lowest possible over-
head. This requirement arises because many systems already have some form
of a process manager (often integrated with a resource manager) that is tightly
tied to the system. A portable PMI must make effective use of these existing
systems without requiring extra overhead (e.g., requiring no additional processes
beyond what the native system uses). For example, an interface that requires
asynchronous processing of data or interrupts to manage data might cause ad-
ditional overhead for applications even when they are not interacting with the
PMI services; this can be a major issue on large-scale systems. Second, a scalable
data-interchange approach for the key-value system is needed.

This second requirement has a number of aspects. Consider a system in which
each process in a parallel job starts, creates a “contact id,” and wishes to make
it available to the other processes in the parallel job. A simple way to do this is
for the process to provide the data to central server, for example, by adding the
data expressed as a (key,value) pair into a simple database. If all p processes do
this with a central server, the time complexity is O(p); the time for all processes
to extract just a single value is also O(p). This approach is clearly not scalable.
Using multiple servers instead of a single one helps, but it introduces other
problems.

Our solution in PMI is to provide a collective abstraction, permitting the use
of efficient collective algorithms to provide more scalable behavior. In this model,
processes put data into a key-value space (KVS). They then collectively perform
a fence operation. Following completion of the fence, all processes can perform



a get operation against the KVS. Such a design permits many implementations.
Most important, the fence step, which is collective over all processes, provides
an excellent opportunity for the implementation to distribute the data supplied
by the put operations in a scalable manner. For example, a distributed process
manager implementation with multiple processes can use this opportunity to
allow these processes to share their local information with each other.

3 Second-Generation PMI (PMI-2)

While the basic design of PMI-1 was widely adopted by a large number of PMI
libraries and process managers, as we move to more advanced functionality of
MPI as well as to larger systems, several limitations of PMI-1 have become clear.
The second-generation PMI (PMI-2) addresses these limitations.

The complete details of the PMI-2 interface (including function names), and
wire protocol are available online [10, 11]. To avoid dilution, we do not explicitly
mention them in this paper. Instead, we describe the major areas in which PMI-2
improves on PMI-1.

Lack of Query Functionality: PMI-1 provides a simple key-value database
that processes can put values into and get values from. While the process man-
ager is best equipped to understand various system-specific details, PMI-1 does
not allow it to share this information with the MPI processes. In other words, the
process manager itself cannot add system-specific information to the key-value
database; thus MPI processes cannot query such information from the process
manager through PMI-1.

An example issue created by this limitation occurs on multicore and multipro-
cessor systems, where the MPI implementation must determine which processes
reside on the same SMP node (e.g., to create shared-memory segments or for
hierarchical collectives). Each process gathers this information by fetching the
contact information for all other MPI processes and determining which contact
addresses are local to itself. While this approach is functional, it is extremely
inefficient because it results in O(p) PMI get operations for each MPI process
(O(p2) total operations).

PMI-2 introduces the concept of job attributes, which are predefined keys
provided by the process manager. Using such keys, the process manager can pass
system-specific information to the MPI processes; that is, these keys are added
into the key-value database directly by the process manager with system layout
information, allowing each MPI process to get information about the layout of all
MPI processes in a single operation. Further, since the process manager knows
that such attributes are read-only, it can optimize their storage by caching copies
on local agents, thus allowing the number of PMI requests to be reduced from
O(p2) (in the case of PMI-1) to nearly zero (in the case of PMI-2)3.

Database Information Scope: PMI-1 uses a flat key-value database. That is,
an MPI process cannot restrict the scope of a key that it puts into the database;

3 The read-only attributes still need to be fetched, which causes the number of requests
with PMI-2 to be non-zero



all information is global. Thus, if some information needs to be local only to
a subset of processes, PMI-1 provides no mechanism for the MPI processes to
inform the process manager about it. For example, information about shared-
memory keys is relevant only to processes on the same node; but the process
manager cannot optimize where such information is stored or replicated.

To handle this issue, PMI-2 introduces “scoping” of keys as node-level and
global (further restriction of the scope is not supported in PMI-2, in favor of
simplicity as opposed to generality). For example, keys corresponding to shared
memory segments on a node can be restricted to a node-level scope, thus allowing
the process manager to optimize retrieval.

Hybrid MPI+Threads Programs: PMI-1 is not thread safe. Therefore, in
the case of multithreaded MPI programs, the MPI implementation must protect
calls to PMI-1 by using appropriate locking mechanisms. Such locking is often
coarse-grained and serializes communication between the PMI library and the
process manager. That is, until the PMI library sends a query to the process
manager and gets a response for it (a round-trip communication), no other thread
can communicate over the same socket. PMI-2 functions are thread-safe. Thus,
multiple threads can communicate with the server in a more fine-grained manner,
thereby pipelining requests better and improving performance.

Dynamic Processes: Each process group in PMI-1 maintains a separate
database, and processes are not allowed to query for information across databases.
For dynamically spawned processes, this is a severe limitation because it requires
such processes to manually exchange their database information and load them
into their individual databases. This procedure is cumbersome and expensive
(with respect to both performance and memory usage). PMI-2 recognizes the
concept of a “job” that can contain multiple applications connected to each
other or where one is spawned from another. This allows such jobs to share
database information without the need to explicitly replicate it.

Fault Tolerance: PMI-1 does not specify any mechanism for respawning pro-
cesses when a fault occurs. Note that this is different from spawning an MPI-2
dynamic process, since such a process would form its own process group (MPI_
COMM_WORLD) and not just replace a process in the existing process group. PMI-2
provides a concept of respawning processes, where a new process essentially re-
places the original process within the same process group.

PMI-2 has been implemented as part of a new process-management frame-
work in MPICH2, called Hydra [5].

4 Experimental Evaluation and Analysis

In this section, we present the results of several experiments that compare the
performance of PMI-2 with that of PMI-1.

4.1 System Information Query Functionality

As described in Section 3, PMI-1 provides only a simple key-value database that
processes can put values into and get values from, so a process manager cannot



Fig. 2. Process launching on a 5760-core SiCortex system: (left) launch time and
(right) number of PMI requests.

provide system specific information to the MPI processes. Thus, in order to
determine which processes reside on the same SMP node, O(p2) PMI operations
are required. With PMI-2’s job attributes, this reduces to nearly zero.

This behavior is reflected in the launch time of MPI applications. Figure 2(left)
shows this behavior for a simple MPI application (that just calls MPI Init

and MPI Finalize) with PMI-1 and PMI-2 on a 5760-core SiCortex system.
As shown in the figure, the overall launch time increases rapidly with system
size for PMI-1. With PMI-2, on the other hand, the time taken is significantly
less. Figure 2(right) shows further analysis of the two PMI implementations with
respect to the number of PMI requests observed by the process manager. This
figure illustrates the reason for the performance difference between the imple-
mentations: PMI-1 has several orders of magnitude more PMI requests than does
PMI-2.

4.2 Impact of Added PMI Functionality over the Native Process
Manager

As described in Section 2.3, some systems already have a process manager (often
integrated with a resource manager) that is tightly tied to the system. While
some process managers might natively provide PMI functionality, others do not.
An efficient implementation of the PMI interface must make effective use of
such “native process managers” without requiring extra overhead (for example,
by requiring heartbeat operations that wake up additional processes, thus dis-
turbing the core computation). In this section, we evaluate this “noise impact”
on 1600-cores of the SiCortex system using Class C NAS parallel benchmarks in
two modes: (1) using the native process manager on the system, SLURM, that
already provides PMI-1 services, and (2) using the Hydra process manager that
internally uses SLURM for process launching and management, but separately
provides PMI services on top of it using an extra process daemon.

As shown in Figure 3, the impact of having additional PMI services (leg-
end “Hydra”) on top of the native process manager (legend “SLURM”) on the
system does not add any significant overhead. Figure 3(left) shows the impact
on runtime, where there is no perceivable overhead. Figure 3(right) shows the
percentage difference between the highest and lowest execution times noticed on
a large number of runs of the application. Again, in most cases this difference is
close to 0%, with a maximum of 0.5% for the EP application.



Fig. 3. Runtime impact of separate PMI server daemons: (left) absolute runtime;
and (right) percentage variance in runtime.

The primary reason for such lack of overhead is that the PMI design com-
pletely relies on synchronous activity, and thus there is no asynchronous waking
of PMI service daemons. That is, once the initialization is complete, unless the
MPI process sends a PMI request, there is no additional overhead.

4.3 Performance of Multithreaded MPI Applications

Fig. 4. Multithreading Performance

With an increasing number of cores
on each node, researchers are studying
approaches for using MPI in conjunc-
tion with threads, in which case MPI
functions might be called from multi-
ple threads of a process. Since PMI-1
is not thread safe, all PMI calls must
be protected by coarse-grained exter-
nal locks; thus, only one thread can
communicate with a process manager
at a given time. PMI-2, on the other
hand, is thread-safe, allowing for multiple threads to communicate with the pro-
cess manager in a fine-grained manner.

In this experiment, we measure the concurrency of PMI operations by using
a benchmark that continuously publishes and unpublishes services to the process
manager4. With PMI-1, each thread obtains a lock, sends a publish request and
waits for a response from the process manager before releasing the lock. With
PMI-2, each PMI request contains a thread ID; so the PMI library can send
one request and release the lock (allowing other threads to send requests) even
before it gets its response. When the process manager responds to the publish
requests, it sends back the original thread ID with the response, allowing it to
be forwarded to the appropriate thread.

The impact of such threading capability is illustrated in Figure 4. As shown
in the figure, the average time taken by each PMI request for PMI-1 does not
reduce with increasing number of threads since all requests are serialized (the

4 These operations are used in MPI Publish name and MPI Unpublish name.



total amount of work is fixed, but shared between all the threads). With PMI-
2, however, when multiple threads make concurrent PMI requests, all requests
are pipelined in a fine-grained manner, allowing for better concurrency. Thus
the average PMI latency perceived by each thread would be lesser. We notice
that for the single-threaded case, PMI-2 has additional overhead compared with
PMI-1. This result is unexpected and is being investigated.

4.4 Comparison with Alternative Process Management Frameworks

Fig. 5. Job launch time comparison
with alternative process managers

In this section, we compare an
implementation of the PMI-2 in-
terface with an alternate process-
management framework, OpenRTE.
OpenRTE [2] (ORTE) is the process-
management system used in Open
MPI. It is designed to provide ro-
bust and transparent support for par-
allel process management. Like PMI,
it includes a system of (key,value)
pairs that are exchanged between
the MPI processes and the process-
management system. Figure 5 compares launch time of MPI applications for the
Hydra implementation of PMI-2 and OpenRTE. As shown in the figure, PMI-2
performs slightly better than ORTE5 on this 796-core commodity cluster.

5 Related Work

Improvements to the process-management framework for parallel programming
models is not a new research topic. However, most efforts have focused on im-
proving the process manager itself with respect to how it launches and manages
processes. The OSC mpiexec [9], OSU mpirun (also known as SceLA) [13], and
SLURM [15] are examples of such work. OSC mpiexec is a process manager for
MPI applications that internally uses PBS [8] for launching and managing jobs.
It is a centralized process manager that communicates using multiple process-
management wire protocols, including PMI-1. OSU mpirun is based on SSH;
it uses a hierarchical approach to launch processes and interacts with PMI-1.
SLURM [15] differs from other process managers primarily in that it provides
an entire infrastructure that launches and manages processes; it also provides its
own PMI-1 implementation to interact with the processes. While all these im-
plementations seek to improve process management on large-scale systems, our
work differs in that none of these implementations study the requirements and
limitations of the interface between the MPI library and the process manager,
which is the PMI API and the wire protocol.

ORTE provides a mechanism for MPI processes to interact with the inte-
grated process manager. However, it does not explicitly decouple these function-
alities, as do PMI and its associated wire protocol.

5 Open MPI v1.4.1 was used for the measurements presented here.



In summary, our work differs from other process-management systems with
respect to its capabilities and underlying architecture. At the same time, PMI-2
provides a complementary contribution to those systems in that it can be used
with them simultaneously.

6 Concluding Remarks

We presented a generic process-management interface, PMI, that allows different
process-management frameworks to interact with parallel libraries such as MPI.
We first described PMI-1, which is currently used in MPICH2 and all its deriva-
tives. We then described PMI-2, the second generation of PMI that eliminates
various shortcomings in PMI-1 on modern HPC systems, including scalability
issues for large multi-core systems and interaction with hybrid MPI-and-threads
models. Our performance results demonstrate significant advantages of PMI-2
compared with PMI-1.
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